
COMPSCI 389
Introduction to Machine Learning

Models, Algorithm Template, Nearest Neighbor
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Review

• Input output pair (𝑋𝑋,𝑌𝑌)
• 𝑋𝑋: Input, features, attributes, covariates, or predictors

• Numerical (discrete/continuous), categorical (nominal/ordinal), etc.
• 𝑌𝑌: Output, label, or target

• Regression: 𝑌𝑌 is continuous.
• Classification: 𝑌𝑌 is discrete

• Data set: 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 𝑖𝑖=1
𝑛𝑛

• Query: An additional input 𝑋𝑋
• Goal: Predict the label 𝑌𝑌 associated with 𝑋𝑋.

2

Models (Supervised Learning)

• A model is a mechanism that maps input data to predictions.
• (Offline) ML algorithms take data sets as input and produce

models as output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for
each feature vector in the
query.

Online ML algorithms can receive data
over time, improving their models as more
data becomes available.

3

Training/Fitting

• ML algorithms could take a data set and query at the same time
and output a prediction for the query.

• Each time a new query is given, the algorithm re-processes the entire data
set.

• Idea: More efficient to preprocess the data set, computing
relevant statistics and quantities.

• Given a query, the algorithm might reference the statistics and quantities
it computed without re-referencing the data set at all!

• This pre-processing of the data set is called training.
• Sometimes: “Training the model”
• Sometimes: “Fitting the model to data”
• Sometimes: “Pre-processing data”

4

Scikit-Learn Models

• Scikit-Learn is a popular ML library in python.
• It has objects called “models”.

• These “models” are more than just models – they are complete ML
algorithms.

5

Scikit-Learn Models

• Scikit-Learn models implement the functions:
• fit(self, X, y): The function for fitting the model to the data

(training the model given the data / preprocessing the data).
• X: A 2D array-like structure (e.g., DataFrame) representing the features. Each row is

a point and each column is a feature.
• y: A 1D array-like structure (e.g., Series) representing the target values
• Returns self to simplify chaining together operations.

• predict(self, X): The function for producing predictions given
queries.

• X: A 2D array-like structure representing the data for which predictions are to be
made. Each row is a sample and each column is a feature.

• Returns a numpy array of predicted labels/values.

• Note: Ideally fit and predict are compatible with X and y being
DataFrames or numpy arrays.

6

Scikit-Learn Models
from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
 def __init__(self, param1=1, param2=2):
 # Initialization code
 self.param1 = param1
 self.param2 = param2

 def fit(self, X, y):
 # Training code
 # Implement your training algorithm here
 return self

 def predict(self, X):
 # Prediction code
 # Implement your prediction algorithm here
 return np.zeros(len(X))

• Given data set (X,y) and query:

model = CustomMLAlgorithm()

model.fit(X,y)

predictiosn = model.predict(query)

7

Scikit-Learn Models
from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
 def __init__(self, param1=1, param2=2):
 # Initialization code
 self.param1 = param1
 self.param2 = param2

 def fit(self, X, y):
 # Training code
 # Implement your training algorithm here
 return self

 def predict(self, X):
 # Prediction code
 # Implement your prediction algorithm here
 return np.zeros(len(X))

• Given data set (X,y) and query:

model = CustomMLAlgorithm()

model.fit(X,y)

predictiosn = model.predict(query)

8

Scikit-Learn Models
from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
 def __init__(self, param1=1, param2=2):
 # Initialization code
 self.param1 = param1
 self.param2 = param2

 def fit(self, X, y):
 # Training code
 # Implement your training algorithm here
 return self

 def predict(self, X):
 # Prediction code
 # Implement your prediction algorithm here
 return np.zeros(len(X))

• Given data set (X,y) and query:

model = CustomMLAlgorithm()

model.fit(X,y)

predictiosn = model.predict(query)

9

Scikit-Learn Models
from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
 def __init__(self, param1=1, param2=2):
 # Initialization code
 self.param1 = param1
 self.param2 = param2

 def fit(self, X, y):
 # Training code
 # Implement your training algorithm here
 return self

 def predict(self, X):
 # Prediction code
 # Implement your prediction algorithm here
 return np.zeros(len(X))

• Given data set (X,y) and query:

model = CustomMLAlgorithm()

model.fit(X,y)

predictions = model.predict(query)

10

Nearest Neighbor

• A particularly simple yet effective ML algorithm based on the core idea:
 When presented with a query, find the data point (row) that is

most similar to the query and give the label associated with
this most-similar point as the prediction.

• We can map this to fit/predict functions:
• fit: Store the data
• predict: For each query row do the following

• Loop over each row in the training data, computing the Euclidean distance between the
query and the row.

• Create an array holding the labels from the rows with the smallest distance to the query
feature vector (often just one element).

• Return an arbitrary (e.g., random) element of the array.

11

Query:
414.7 456.95 705.58 499.43 513.53 543.15 408.51 384.38 442.49

physics biology history English geograpliteratuPortugumath chemistry distance gpa
622.6 491.56 439.93 707.64 663.65 557.09 711.37 731.31 509.8 630.624 1.33333

538 490.58 406.59 529.05 532.28 447.23 527.58 379.14 488.64 363.996 2.98333
455.18 440 570.86 417.54 453.53 425.87 475.63 476.11 407.15 241.463 1.97333
756.91 679.62 531.28 583.63 534.42 521.4 592.41 783.76 588.26 647.798 2.53333
584.54 649.84 637.43 609.06 670.46 515.38 572.52 581.25 529.04 425.748 1.58667
325.99 466.74 597.06 554.43 535.77 717.03 477.6 503.82 422.92 270.034 1.66667

622.6 587.04 598.85 603.32 690.7 652.86 533.05 755.3 628.73 559.94 3.72333
527.65 559.99 758.37 669.71 645.62 648.67 539.23 470.78 486.13 331.958 3.08333
647.64 687.83 630.61 613.95 557.43 739.94 557.27 557.14 632.54 505.025 0

Nearest
Neighbor

Prediction

12

Sheet1

		Query:

		414.7		456.95		705.58		499.43		513.53		543.15		408.51		384.38		442.49

		physics		biology		history		English		geography		literature		Portuguese		math		chemistry				distance				gpa

		622.6		491.56		439.93		707.64		663.65		557.09		711.37		731.31		509.8				630.624				1.33333

		538		490.58		406.59		529.05		532.28		447.23		527.58		379.14		488.64				363.996				2.98333

		455.18		440		570.86		417.54		453.53		425.87		475.63		476.11		407.15				241.463				1.97333

		756.91		679.62		531.28		583.63		534.42		521.4		592.41		783.76		588.26				647.798				2.53333

		584.54		649.84		637.43		609.06		670.46		515.38		572.52		581.25		529.04				425.748				1.58667

		325.99		466.74		597.06		554.43		535.77		717.03		477.6		503.82		422.92				270.034				1.66667

		622.6		587.04		598.85		603.32		690.7		652.86		533.05		755.3		628.73				559.94				3.72333

		527.65		559.99		758.37		669.71		645.62		648.67		539.23		470.78		486.13				331.958				3.08333

		647.64		687.83		630.61		613.95		557.43		739.94		557.27		557.14		632.54				505.025				0

Implementing Nearest Neighbor

• See 5 Nearest Neighbor.ipynb.
• When going through the following slides, you can follow along in

this notebook.

13

__init__

• Our initial nearest neighbor implementation has no
hyperparameters or initialization to perform, so we do not
implement __init__.

• Hyperparameter: A setting or value that changes the behavior of an ML
algorithm.

• We will revisit hyperparameters later when we encounter them.

14

fit

15

• We want to be compatible
with DataFrames or NumPy
arrays.

• We will convert DataFrames
to NumPy arrays.

predict

• Notice that predict
returns a prediction
for each row in X.

16

predict

• Notice that predict
returns a prediction
for each row in X.

17

predict

• np.where returns a tuple of
arrays, one for each
dimension.

• If we gave a 2d array, [0]
would be the row index and
[1] would be the col index.

• distances is 1-D, so there is
only one element in the tuple
here, so we pass [0] to get the
element

• If many equally close, this
implementation selects the
first one.

18

predict

19

Applying NaiveNearestNeighbor
to GPA Data

20

Applying NaiveNearestNeighbor
to GPA Data

21

Optimizing Nearest Neighbor Search

• Our predict function loops over the entire data set for each
query point

• We can use data structures for finding nearest neighbors to make
our implementation more efficient.

• K-D Trees: Effective for low-dimensional data, but performance
decreases with higher dimensions.

• Ball Trees: Better suited for higher dimensional spaces.

• SciKit-Learn includes optimized implementations of both
• We will update our implementation to use a K-D tree.

22

23

24

25

k specifies the number of
nearest neighbors to query.

dist is a 2D array holding
the distances to each of the
nearest neighbors of each
query.

y_data was stored during
the fit call.

Implementation Comparison

• Note: When there are multiple nearest neighbors, the algorithms
may not return the same values.

• Let’s run each implementation of Nearest Neighbor 100 times on
the GPA data (with 2 queries each time).

• Which will be faster?
• How much faster?

• Question: Why do you think our naïve algorithm was faster?
• Answer: The overhead cost of building the K-D tree didn’t pay of

with just 2 queries.
26

Implementation Comparison (cont.)

• Let’s run 5,000 points through as queries.
• Recall: 43,303 points total.

27

Intermission

• Class will resume in 5 minutes.
• Feel free to:

• Stand up and stretch.
• Leave the room.
• Talk to those around you.
• Write a question on a notecard and

add it to the stack at the front of the
room.

28

	COMPSCI 389�Introduction to Machine Learning
	Review
	Models (Supervised Learning)
	Training/Fitting
	Scikit-Learn Models
	Scikit-Learn Models
	Scikit-Learn Models
	Scikit-Learn Models
	Scikit-Learn Models
	Scikit-Learn Models
	Nearest Neighbor
	Slide Number 12
	Implementing Nearest Neighbor
	__init__
	fit
	predict
	predict
	predict
	predict
	Applying NaiveNearestNeighbor�to GPA Data
	Applying NaiveNearestNeighbor�to GPA Data
	Optimizing Nearest Neighbor Search
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Implementation Comparison
	Implementation Comparison (cont.)
	Intermission

